Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.022
Filtrar
1.
Environ Monit Assess ; 196(5): 490, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691199

RESUMEN

Forest-savanna transition zones of West Africa are uniquely characterized by forest groves, forest patches, or forest islands, the importance of which for sustainable resource management and their potential for carbon sequestration and nutrient cycling is often underrated. Our study conducted a comparative analysis of the soil organic carbon and nutrient characteristics of the Anogeissus groves in the old Opara forest reserve and their adjoining arable lands. We established 30 sampling frames of 100 m × 100 m plots with 15 frames per land use type. For each sampling frame, six observation points were randomly selected, and composite soil samples were collected at soil depths of 0-20 cm and 20-50 cm per observation point. Our results showed Anogeissus groves and their adjoining arable lands to exist on similar landscapes while the groves have enriched soil morphological characteristics (e.g., soil color), higher soil organic carbon (SOC), and better nutrient characteristics. There were strong positive relationships between SOC, effective cation exchange capacity, total nitrogen, calcium, magnesium and calcium, zinc, electrical conductivity, and copper. The significant soil organic matter accumulation in the groves accounts for the overall improved soil characteristics over the adjoining arable lands. Preserving the groves and similar African ecosystems may be important in climate regulation, resources and biodiversity conservation, and ethnopharmacology for rural communities. Thus, a question arises: should more land be set aside for ecological conservation or for agricultural productivity?


Asunto(s)
Carbono , Monitoreo del Ambiente , Bosques , Nitrógeno , Suelo , Suelo/química , Nigeria , Carbono/análisis , Nitrógeno/análisis , Conservación de los Recursos Naturales , Nutrientes/análisis , Agricultura
2.
Environ Geochem Health ; 46(6): 179, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695935

RESUMEN

The uncertainty in the generation and formation of non-point source pollution makes it challenging to monitor and control this type of pollution. The SWAT model is frequently used to simulate non-point source pollution in watersheds and is mainly applied to natural watersheds that are less affected by human activities. This study focuses on the Duliujian River Basin (Xiqing section), which is characterized by a dense population and rapid urbanization. Based on the calibrated SWAT model, this study analyzed the effects of land use change on non-point source pollution both temporally and spatially. It was found that nitrogen and phosphorus non-point source pollution load losses were closely related to land use type, with agricultural land and high-density urban land (including rural settlements) being the main contributors to riverine nitrogen and phosphorus pollution. This indicates the necessity of analyzing the impact of land use changes on non-point source pollution loads by identifying critical source areas and altering the land use types that contribute heavily to pollution in these areas. The simulation results of land use type changes in these critical source areas showed that the reduction effect on non-point source pollution load is in the order of forest land > grassland > low-density residential area. To effectively curb surface source pollution in the study area, strategies such as modifying urban land use types, increasing vegetation cover and ground infiltration rate, and strictly controlling the discharge of domestic waste and sewage from urban areas can be implemented.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Ríos , Contaminantes Químicos del Agua , Ríos/química , Fósforo/análisis , Nitrógeno/análisis , China , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Urbanización , Contaminación Difusa/análisis , Contaminación Difusa/prevención & control , Modelos Teóricos , Agricultura , Simulación por Computador
3.
Food Res Int ; 186: 114306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729707

RESUMEN

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Asunto(s)
Aminoácidos , Aminas Biogénicas , Queso , Proteolisis , Queso/microbiología , Queso/análisis , Aminoácidos/análisis , Aminoácidos/metabolismo , Aminas Biogénicas/análisis , Microbiología de Alimentos , Manipulación de Alimentos/métodos , Leuconostoc/metabolismo , Leuconostoc/crecimiento & desarrollo , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Nitrógeno/análisis , Calidad de los Alimentos , Fermentación
4.
Trop Anim Health Prod ; 56(4): 159, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730223

RESUMEN

Cell components soluble in neutral detergent are a diverse group, both compositionally and nutritionally. The present study aimed to evaluate production responses, behavior (eating, ruminating, and idling), and nitrogen balance of dairy goats fed different ratios of neutral detergent-soluble carbohydrate fractions. Five multiparous Alpine does with mean ± SD initial body mass of 49.5 ± 7.9 kg and 60 days of lactation were randomly assigned in a 5 × 5 Latin square design. The treatments were the ratios of starch (starch associated with soluble sugar [StSS]) to neutral detergent-soluble fiber (NDSF) (StSS:NDSF): 0.89, 1.05, 1.24, 1.73, and 2.92. No effect was observed (P > 0.05) of StSS:NDSF on the intakes of neutral detergent fiber (NDF) and NDSC. However, DM intake showed a quadratic behavior (P = 0.049). The ingestive behavior was affected by StSS:NDSF linearly increased (P = 0.002) the feeding efficiency. The increase in StSS:NDSF caused a linear increase in fecal (P = 0.011), urinary (P < 0.001), and milk nitrogen excretion (P = 0.024). The increase in StSS:NDSF affected (P = 0.048) milk yield and net energy lactation (P = 0.036). In conclusion, dairy goats experience reduced dry matter intake and milk yield when subjected to high-NDSC diets, specifically those above 1.24 StSS:NDSF ratio. Elevated NDSC levels in the diets lead to decreased feeding time, whereas rumination remains unaffected. Nitrogen losses in goats increase linearly with high-NDSC diets, and a significant impact on nitrogen balance.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Cabras , Lactancia , Leche , Nitrógeno , Animales , Cabras/fisiología , Femenino , Nitrógeno/metabolismo , Nitrógeno/análisis , Dieta/veterinaria , Leche/química , Alimentación Animal/análisis , Conducta Alimentaria/efectos de los fármacos , Distribución Aleatoria , Fibras de la Dieta/análisis , Fibras de la Dieta/administración & dosificación , Carbohidratos de la Dieta/análisis , Carbohidratos de la Dieta/administración & dosificación
5.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733446

RESUMEN

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Asunto(s)
Monitoreo del Ambiente , Fósforo , Agua de Mar , Oligoelementos , Contaminantes Químicos del Agua , Mar del Norte , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Fósforo/análisis , Nutrientes/análisis , Nitrógeno/análisis , Metales/análisis , Eutrofización
6.
BMJ Open Respir Res ; 11(1)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697675

RESUMEN

BACKGROUND: Methods used to assess ventilation heterogeneity through inert gas washout have been standardised and showed high sensitivity in diagnosing many respiratory diseases. We hypothesised that nitrogen single or multiple breath washout tests, respectively nitrogen single breath washout (N2SBW) and nitrogen multiple breath washout (N2MBW), may be pathological in patients with clinical suspicion of asthma but normal spirometry. Our aim was to assess whether N2SBW and N2MBW are associated with methacholine challenge test (MCT) results in this population. We also postulated that an alteration in SIII at N2SBW could be detected before the 20% fall of forced expiratory volume in the first second (FEV1) in MCT. STUDY DESIGN AND METHODS: This prospective, observational, single-centre study included patients with suspicion of asthma with normal spirometry. Patients completed questionnaires on symptoms and health-related quality-of-life and underwent the following lung function tests: N2SBW (SIII), N2MBW (Lung clearance index (LCI), Scond, Sacin), MCT (FEV1 and sGeff) as well as N2SBW between each methacholine dose. RESULTS: 182 patients were screened and 106 were included in the study, with mean age of 41.8±14 years. The majority were never-smokers (58%) and women (61%). MCT was abnormal in 48% of participants, N2SBW was pathological in 10.6% at baseline and N2MBW abnormality ranged widely (LCI 81%, Scond 18%, Sacin 43%). The dose response rate of the MCT showed weak to moderate correlation with the subsequent N2SBW measurements during the provocation phases (ρ 0.34-0.50) but no correlation with N2MBW. CONCLUSIONS: Both MCT and N2 washout tests are frequently pathological in patients with suspicion of asthma with normal spirometry. The weak association and lack of concordance across the tests highlight that they reflect different but not interchangeable pathological pathways of the disease.


Asunto(s)
Asma , Pruebas Respiratorias , Pruebas de Provocación Bronquial , Cloruro de Metacolina , Nitrógeno , Espirometría , Humanos , Asma/diagnóstico , Asma/fisiopatología , Cloruro de Metacolina/administración & dosificación , Femenino , Masculino , Estudios Prospectivos , Adulto , Pruebas Respiratorias/métodos , Persona de Mediana Edad , Nitrógeno/análisis , Pruebas de Provocación Bronquial/métodos , Volumen Espiratorio Forzado , Pruebas de Función Respiratoria/métodos , Pulmón/fisiopatología , Broncoconstrictores/administración & dosificación
7.
ScientificWorldJournal ; 2024: 6086730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715843

RESUMEN

Cabbage (Brassica oleracea var. capitata L.) holds significant agricultural and nutritional importance in Ethiopia; yet, its production faces challenges, including suboptimal nitrogen fertilizer management. The aim of this review was to review the possible effect of nitrogen fertilizer levels on the production of cabbage in Ethiopia. Nitrogen fertilization significantly influences cabbage yield and quality. Moderate to high levels of nitrogen application enhance plant growth, leaf area, head weight, and yield. However, excessive nitrogen levels can lead to adverse effects such as delayed maturity, increased susceptibility to pests and diseases, and reduced postharvest quality. In Ethiopia, small-scale farmers use different nitrogen levels for cabbage cultivation. In Ethiopia, NPSB or NPSBZN fertilizers are widely employed for the growing of various crops such as cabbage. 242 kg of NPS and 79 kg of urea are the blanket recommendation for the current production of cabbage in Ethiopia. The existing rate is not conducive for farmers. Therefore, small-scale farmers ought to utilize an optimal and cost-effective nitrogen rate to boost the cabbage yield. Furthermore, the effectiveness of nitrogen fertilization is influenced by various factors including the soil type, climate, cabbage variety, and agronomic practices. Integrated nutrient management approaches, combining nitrogen fertilizers with organic amendments or other nutrients, have shown promise in optimizing cabbage production while minimizing environmental impacts. The government ought to heed suggestions concerning soil characteristics such as the soil type, fertility, and additional factors such as the soil pH level and soil moisture contents.


Asunto(s)
Brassica , Fertilizantes , Nitrógeno , Fertilizantes/análisis , Brassica/crecimiento & desarrollo , Brassica/efectos de los fármacos , Brassica/metabolismo , Nitrógeno/análisis , Nitrógeno/metabolismo , Etiopía , Agricultura/métodos , Suelo/química , Productos Agrícolas/crecimiento & desarrollo
8.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704527

RESUMEN

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Asunto(s)
Archaea , Lagos , Salinidad , Lagos/microbiología , Lagos/química , Archaea/genética , Archaea/clasificación , Archaea/metabolismo , Tibet , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Biodiversidad , Ecosistema , ARN Ribosómico 16S/genética , Nitrógeno/metabolismo , Nitrógeno/análisis , ADN de Archaea/genética
9.
Sci Rep ; 14(1): 10097, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698154

RESUMEN

To explore the impacts of continuous Ganoderma lucidum cultivation on soil physicochemical factors, soil enzyme activity, and the metabolome of Ganoderma lucidum fruiting bodies, this study conducted two consecutive years of cultivation on the same plot of land. Soil physicochemical factors and enzyme activity were assessed, alongside non-targeted metabolomic analysis of the Ganoderma lucidum fruiting bodies under continuous cultivation. The findings unveiled that in the surface soil layer (0-15 cm), there was a declining trend in organic matter, ammonium nitrogen, available phosphorus, available potassium, pH, polyphenol oxidase, peroxidase, alkaline phosphatase, and sucrase, whereas nitrate nitrogen, electrical conductivity (EC), and salt content exhibited an upward trend. Conversely, in the deeper soil layer (15-30 cm), organic matter, ammonium nitrogen, available potassium, alkaline phosphatase, and sucrase demonstrated a decreasing trend, while nitrate nitrogen, available phosphorus, pH, EC, salt content, polyphenol oxidase, and soil peroxidase showed an increasing trend. Metabolomic analysis of Ganoderma lucidum fruiting bodies distinguished 64 significantly different metabolites between the GCK and GT groups, with 39 components having markedly higher relative contents in GCK and 25 components having significantly lower relative contents in GCK compared to GT. Moreover, among these metabolites, there were more types with higher contents in the fruiting bodies harvested in the first year (GCK) compared to those harvested in the second year (GT), with pronounced differences. KEGG pathway analysis revealed that GCK exhibited more complex metabolic pathways compared to GT. The metabolites of Ganoderma lucidum fruiting bodies were predominantly influenced by soil physicochemical factors and soil enzyme activity. In the surface soil layer (0-15 cm), the metabolome was significantly affected by soil pH, soil organic matter, available phosphorus, and soil alkaline phosphatase, while in the deeper soil layer (15-30 cm), differences in the Ganoderma lucidum metabolome were more influenced by soil alkaline phosphatase, soil catalase, pH, nitrate nitrogen, and soil sucrase.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Reishi , Suelo , Reishi/metabolismo , Reishi/crecimiento & desarrollo , Suelo/química , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Nitrógeno/metabolismo , Nitrógeno/análisis , Fósforo/metabolismo , Fósforo/análisis , Nutrientes/metabolismo , Nutrientes/análisis , Metaboloma , Metabolómica/métodos , Concentración de Iones de Hidrógeno
10.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700640

RESUMEN

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Suelo , Triticum , Suelo/química , Nitrógeno/análisis , Fósforo/análisis , Fertilizantes/análisis , Agricultura/métodos , Nutrientes/análisis , Carbono/análisis
11.
Water Sci Technol ; 89(6): 1466-1481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557712

RESUMEN

Floating treatment wetlands (FTWs) have the potential to improve the quality of wastewater discharges, yet design basics are unavailable to size these systems. This study investigates the effect of FTWs' coverage ratio and hydraulic retention time on agri-food wastewater treatment. This was studied in a pilot-scale experiment comprising four lagoons (6.5 m3 each) fed with real effluent from an existing tertiary treatment lagoon. An evaluation of FTW of different sizes (L24, L48, and L72 representing 24, 48, and 72% of pilot lagoons surface areas) and a control, L0 (without FTW), was performed over 16 months. Overall, L72 and L48 moderately improved total nitrogen (TN) mass removal compared to L0 (p < 0.05), while L24 exhibited similar TN mass removal (p = 0.196). The highest improvement was observed for L72, exhibiting up to 55% (mean of 13%) greater N mass removal than the control. The net increase in TN removal by FTWs was mainly related to denitrification, promoted by decreasing dissolved oxygen for increasing FTW coverage ratio. Residence time, temperature, and dissolved oxygen were the main parameters driving TN removal by FTWs. Retrofitting existing lagoons with FTW can facilitate N retrieval through plant harvesting, thereby reducing N remobilization from sediment (common in conventional lagoons).


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Eliminación de Residuos Líquidos , Desnitrificación , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Oxígeno
12.
PLoS One ; 19(4): e0300615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568985

RESUMEN

The majority of Iranian fig production is exported, making it one of the world's most well-known healthy crops. Therefore, the main objective of the current experiment was to investigate the effects of various types of organic fertilizers, such as animal manure (cow and sheep), bird manure (partridge, turkey, quail, and chicken), and vermicompost, on the nutritional status of trees, vegetative and reproductive tree characteristics, fruit yield, and fruit quality traits in dried fig cultivar ("Sabz"). According to the findings, applying organic fertilizers, particularly turkey and quail, significantly improves vegetative and reproductive characteristics. However, other manures such as sheep, chicken, and vermicompost had a similar effect on the growth parameters of fig trees. Additionally, the findings indicated that except for potassium, use of all organic fertilizers had an impact on macro and microelements such as phosphorus, nitrogen, and sodium amount in fig tree leaves. Also, based on fruit color analysis in dried figs, the use of all organic fertilizers improved fruit color. Moreover, the analyses fruit biochemical showed that the use of some organic fertilizers improved that TSS and polyphenol compounds such as coumarin, vanillin, hesperidin gallic acid and trans frolic acid. In general, the results indicated that the addition of organic fertilizers, especially turkey manure, led to increased vegetative productivity and improvement in the fruit quality of the rain-fed fig orchard.


Asunto(s)
Ficus , Frutas , Ovinos , Animales , Suelo/química , Ficus/química , Irán , Fertilizantes/análisis , Estiércol/análisis , Estado Nutricional , Nitrógeno/análisis
13.
Glob Chang Biol ; 30(4): e17264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556774

RESUMEN

Nutrient enrichment often alters the biomass and species composition of plant communities, but the extent to which these changes are reversible after the cessation of nutrient addition is not well-understood. Our 22-year experiment (15 years for nutrient addition and 7 years for recovery), conducted in an alpine meadow, showed that soil nitrogen concentration and pH recovered rapidly after cessation of nutrient addition. However, this was not accompanied by a full recovery of plant community composition. An incomplete recovery in plant diversity and a directional shift in species composition from grass dominance to forb dominance were observed 7 years after the nutrient addition ended. Strikingy, the historically dominant sedges with low germination rate and slow growth rate and nitrogen-fixing legumes with low germination rate were unable to re-establish after nutrient addition ceased. By contrast, rapid recovery of aboveground biomass was observed after nutrient cessation as the increase in forb biomass only partially compensated for the decline in grass biomass. These results indicate that anthropogenic nutrient input can have long-lasting effects on the structure, but not the soil chemistry and plant biomass, of grassland communities, and that the recovery of soil chemical properties and plant biomass does not necessarily guarantee the restoration of plant community structure. These findings have important implications for the management and recovery of grassland communities, many of which are experiencing alterations in resource input.


Asunto(s)
Pradera , Plantas , Biomasa , Poaceae , Suelo/química , Nitrógeno/análisis , Nutrientes
14.
PeerJ ; 12: e17221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638157

RESUMEN

Background: Soil organic nitrogen (SON) levels can respond effectively to crop metabolism and are directly related to soil productivity. However, simultaneous comparisons of SON dynamics using isotopic tracing in diverse agroecosystems are lacking, especially in karst areas with fragile ecology. Methods: To better understand the response of SON dynamics to environmental changes under the coupling of natural and anthropogenic disturbances, SON contents and their stable N isotope (δ15NSON) compositions were determined in abandoned cropland (AC, n = 16), grazing shrubland (GS, n = 11), and secondary forest land (SF, n = 20) from a typical karst area in southwest China. Results: The SON contents in the SF (mean: 0.09%) and AC (mean: 0.10%) profiles were obviously lower than those in the GS profile (mean: 0.31%). The δ15NSON values ranged from 4.35‰-7.59‰, 3.79‰-7.23‰, and 1.87‰-7.08‰ for the SF, AC, and GS profiles, respectively. Decomposition of organic matter controlled the SON variations in the secondary forest land by the covered vegetation, and that in the grazing shrubland by goat excreta. δ15NSON ranges were controlled by the covered vegetation, and the δ15NSON fractionations during SON transformation were influenced by microorganisms in all surface soil. Conclusions: The excreta of goats that contained 15N-enriched SON induced a heavier δ15NSON composition in the grazed shrubland. Long-term cultivation consumes SON, whereas moderate grazing increases SON content to reduce the risk of soil degradation. This study suggests that optimized crop-livestock production may benefit the sustainable development of agroecosystems in karst regions.


Asunto(s)
Nitrógeno , Suelo , Nitrógeno/análisis , Suelo/química , Bosques , Ecología , China
15.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605320

RESUMEN

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Asunto(s)
Fertilizantes , Zea mays , Nitrógeno/análisis , Dióxido de Carbono , Agricultura , Suelo
16.
Sci Total Environ ; 927: 172338, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608897

RESUMEN

Algal blooms in lakes have been a challenging environmental issue globally under the dual influence of human activity and climate change. Considerable progress has been made in the study of phytoplankton dynamics in lakes; The long-term in situ evolution of dominant bloom-forming cyanobacteria in meso-eutrophic plateau lakes, however, lacks systematic research. Here, the monthly parameters from 12 sampling sites during the period of 1997-2022 were utilized to investigate the underlying mechanisms driving the superiority of bloom-forming cyanobacteria in Erhai, a representative meso-eutrophic plateau lake. The findings indicate that global warming will intensify the risk of cynaobacteria blooms, prolong Microcystis blooms in autumn to winter or even into the following year, and increase the superiority of filamentous Planktothrix and Cylindrospermum in summer and autumn. High RUETN (1.52 Biomass/TN, 0.95-3.04 times higher than other species) under N limitation (TN < 0.5 mg/L, TN/TP < 22.6) in the meso-eutrophic Lake Erhai facilitates the superiority of Dolichospermum. High RUETP (43.8 Biomass/TP, 2.1-10.2 times higher than others) in TP of 0.03-0.05 mg/L promotes the superiority of Planktothrix and Cylindrospermum. We provided a novel insight into the formation of Planktothrix and Cylindrospermum superiority in meso-eutrophic plateau lake with low TP (0.005-0.07 mg/L), which is mainly influenced by warming, high RUETP and their vertical migration characteristics. Therefore, we posit that although the obvious improvement of lake water quality is not directly proportional to the control efficacy of cyanobacterial blooms, the evolutionary shift in cyanobacteria population structure from Microcystis, which thrives under high nitrogen and phosphorus conditions, to filamentous cyanobacteria adapted to low nitrogen and phosphorus levels may serve as a significant indicator of water quality amelioration. Therefore, we suggest that the risk of filamentous cyanobacteria blooms in the meso-eutrophic plateau lake should be given attention, particularly in light of improving water quality and global warming, to ensure drinking water safety.


Asunto(s)
Cianobacterias , Eutrofización , Lagos , Temperatura , Lagos/microbiología , Lagos/química , China , Monitoreo del Ambiente , Nitrógeno/análisis , Fitoplancton , Cambio Climático , Estaciones del Año , Fósforo/análisis , Nutrientes/análisis , Calentamiento Global
17.
Sci Total Environ ; 927: 172349, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615770

RESUMEN

Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.


Asunto(s)
Biomasa , Hongos , Nitrógeno , Pinus , Microbiología del Suelo , Suelo , China , Pinus/microbiología , Nitrógeno/análisis , Suelo/química , Micorrizas/fisiología , Micobioma , Bosques , Fertilizantes/análisis
18.
Braz J Biol ; 84: e281235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656077

RESUMEN

The increase in prices of fertilizers, energy and other materials necessary for the industry triggered a global economic crisis. Reason that was investigated on the biological and chemical characteristics in relation to the yield of radish nourished with humus from plant residue. The objective was to determine the appropriate dose of humus to obtain greater yield and its relationship with the chemical and biological characteristics of the radish. It is based on applied methodology with an experimental approach; Therefore, the Completely Random Block Design model was used, which consisted of 3 blocks and 5 treatments that were T1 with 0, T2 with 4, T3 with 6, T4 with 8 and T5 with 10 t/ha of humus and They applied 15 days after sowing. The physical characteristics of the radish were evaluated and processed using analysis of variance and Duncan. Concentration of elements in leaves and stomatal density were also analyzed. It was determined that T5 stood out in total plant length with 28.95 cm, plant weight with 76.87 g, equatorial diameter with 4,404 cm and commercial yield with 20,296 t/ha. Nitrogen consumption in relation to yield with 247.44 kg/ha. Stomatal density 459 stomata/mm2 and profitability with 150% and nutrient concentration in leaves highlighted T4 with N, K, Ca, Mg, Mo and Zn. It concludes that T5 stood out with 20,296 t/ha, which differed by 26.04% in relation to the control (T1) with 15,011 t/ha. Therefore, this dose added nutrients to the soil that improved the availability for plant absorption and this influenced the concentration of nutrients in leaves such as N, P and Fe and stomatal density with 459 stomata/mm2, which had a response in good development, strengthening against environmental stress and therefore greater performance.


Asunto(s)
Fertilizantes , Raphanus , Raphanus/química , Raphanus/crecimiento & desarrollo , Fertilizantes/análisis , Sustancias Húmicas/análisis , Hojas de la Planta/química , Nitrógeno/análisis , Nitrógeno/metabolismo , Biomasa
19.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656670

RESUMEN

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Asunto(s)
Alimentación Animal , Lactancia , Metano , Leche , Animales , Bovinos/fisiología , Metano/análisis , Metano/metabolismo , Femenino , Lactancia/fisiología , Leche/química , Leche/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Crianza de Animales Domésticos/métodos , Ensilaje/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Brachiaria , Nitrógeno/metabolismo , Nitrógeno/análisis , Nutrientes/análisis , Nutrientes/metabolismo , Fabaceae/química
20.
PLoS One ; 19(4): e0299562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662683

RESUMEN

Elemental ratios (δ13C, δ15N and C/N) and carbon and nitrogen concentrations in macrophytes, sediments and sponges of the hypersaline Al-Kharrar Lagoon (KL), central eastern Red Sea coast, were measured to distinguish their sources, pathways and see how they have been influenced by biogeochemical processes and terrestrial inputs. The mangroves and halophytes showed the most depleted δ13C values of -27.07±0.2 ‰ and -28.34±0.4 ‰, respectively, indicating their preferential 12C uptake, similar to C3-photosynthetic plants, except for the halophytes Atriplex sp. and Suaeda vermiculata which showed δ13C of -14.31±0.6 ‰, similar to C4-plants. Macroalgae were divided into A and B groups based on their δ13C values. The δ13C of macroalgae A averaged -15.41±0.4 ‰, whereas macroalgae B and seagrasses showed values of -7.41±0.8 ‰ and -7.98 ‰, suggesting uptake of HCO3- as a source for CO2 during photosynthesis. The δ13C of sponges was -10.7±0.3 ‰, suggesting that macroalgae and seagrasses are their main favoured diets. Substrates of all these taxa showed δ13C of -15.52±0.8 ‰, suggesting the KL is at present a macroalgae-dominated lagoon. The δ15N in taxa/sediments averaged 1.68 ‰, suggesting that atmospheric N2-fixation is the main source of nitrogen in/around the lagoon. The heaviest δ15N (10.58 ‰) in halophytes growing in algal mats and sabkha is possibly due to denitrification and ammonia evaporation. The macrophytes in the KL showed high C %, N %, and C/N ratios, but this is not indicated in their substrates due possibly to a rapid turnover of dense, hypersaline waters carrying most of the detached organic materials out into the Red Sea. The δ13C allowed separation of subaerial from aquatic macrophytes, a proxy that could be used when interpreting paleo-sea level or paleoclimatic changes from the coastal marine sediments.


Asunto(s)
Isótopos de Carbono , Carbono , Sedimentos Geológicos , Isótopos de Nitrógeno , Nitrógeno , Nitrógeno/metabolismo , Nitrógeno/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Arabia Saudita , Carbono/metabolismo , Carbono/análisis , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Isótopos de Carbono/análisis , Océano Índico , Algas Marinas/metabolismo , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA